INDS 1662: Electro-Thermal Systems Control

A. COURSE DESCRIPTION

Credits: 4
Lecture Hours/Week: 2
Lab Hours/Week: 4
OJT Hours/Week: *.*

Prerequisites:
This course requires the following prerequisite
INDS 1660 - Mechanical Power Transmission

Corequisites: None

MnTC Goals: None

This course applies basic physics to engineering evaluations of mechanical products, structures and procedures. Students will study and evaluate mechanical drive systems including service, repair, and troubleshooting principles as they pertain to HVAC systems. Thermodynamic principles are studied in heating and cooling systems. The student will be introduced to industrial programmable controllers and electro-thermal systems. (Prerequisites: INDS1660) (4 credits: 2 lecture/2 lab)

B. COURSE EFFECTIVE DATES: 02/01/2019 - Present

C. OUTLINE OF MAJOR CONTENT AREAS
D. LEARNING OUTCOMES (General)
 1. Examine basic physics as applied to mechanical systems
 2. Explain bearing maintenance and lubrication concepts
 3. Evaluate mechanical drive system failures
 4. Explain safety concepts involved in industrial maintenance
 5. Evaluate various equipment maintenance principles
 6. Evaluate service and repair principles
 7. Explain electrical system maintenance requirements
 8. Examine industrial programmable controller maintenance requirements
 9. Describe programmable controller system operation
 10. Analyze principles of physics as applied to HVAC systems
 11. Explain the vapor cycle cooling principle
 12. Describe maintenance requirements for vapor cycle cooling systems
 13. Examine and test operation of cooling and heating systems
 14. Perform failure analysis of cooling and heating systems
 15. Explain boiler heating concepts
 16. Describe maintenance requirements for boiler heating systems
 17. Examine and test operation of boiler heating systems
 18. Perform failure analysis of boiler heating systems
 19. List air conditioning factors
 20. Examine methods of controlling various air conditioning factors
 21. Examine nanotechnology as applied to industrial operations
 22. Evaluate equipment service and repair principles

E. Minnesota Transfer Curriculum Goal Area(s) and Competencies
 None

F. LEARNER OUTCOMES ASSESSMENT
 As noted on course syllabus

G. SPECIAL INFORMATION
 None noted