A. COURSE DESCRIPTION

Credits: 3
Lecture Hours/Week: *.*
Lab Hours/Week: *.*
OJT Hours/Week: *.*
Prerequisites: None
Corequisites: None
MnTC Goals: None

This course develops a proficiency in basic GIS skills for those new to GIS. Techniques for problem solving and cartographic mapping concepts are also introduced, as they are essential to quality cartographic representation and a marketable skill set. This course concentrates on learning to navigate the current version of ArcGIS software at a beginner's level and one developing and creating maps as communication tools.

B. COURSE EFFECTIVE DATES: 05/14/2014 - Present

C. OUTLINE OF MAJOR CONTENT AREAS

1. Issues of Data Integrity
 Projections and Coordinate systems (the basics)
 Data Models: Vector and Raster Models
 Spatial Analysis
 Vector Overlays
 Boolean Rasters
 Digitizing

2. Basic Map Design
 Best Practices in Cartographic Design
 Demonstrate general knowledge and application of cartographic principles
 Understand the fundamentals of GIS as a system, as software and as a science
 GIS Data & Developing, Using and Incorporating Data
 Understand how to acquire geographical data and utilize it within a GIS
 GPS Data Downloads
 Table and Spatial Joins
 Introduction to and development of Geodatabases
 Shapefiles to feature classes
 Domains
 Project management
 File management
 Project Organization
 Use and Development of Metadata
D. LEARNING OUTCOMES (General)

1. Students will be able to add cartographic elements to a finished map using best practices (following the rules).
2. Students will build a GIS vocabulary and use it effectively in future GIS courses and elsewhere.
3. Students will learn how to acquire geographic data and utilize it within a GIS including digitizing.
4. Students will be able to import and display geographic data both raster and vector models.
5. Students will be able to determine basic information about imported data (projections and metadata).
6. Students will be able to prepare both simple and complex (bivariate) thematic maps.
7. Students will be able to add cartographic elements to a finished map using best practices (following the rules).

E. Minnesota Transfer Curriculum Goal Area(s) and Competencies

None

F. LEARNER OUTCOMES ASSESSMENT

As noted on course syllabus

G. SPECIAL INFORMATION

None noted