A. COURSE DESCRIPTION

Credits: 4
Lecture Hours/Week: 0
Lab Hours/Week: 0
OJT Hours/Week: *.*
Prerequisites: None
Corequisites: None
MnTC Goals: Goal 03 - Natural Science

General introduction to biology, focusing on humans, including topics on cell biology, genetics, molecular biology, form and function of organ systems, and the interaction between humans and their environment. Intended for nonbiology majors. Lecture and laboratory. [Core Curriculum Goal Area 3 (LC)]

B. COURSE EFFECTIVE DATES: 09/01/2002 - Present
C. OUTLINE OF MAJOR CONTENT AREAS
 1. Introduction - Scientific method
 2. What is life?
 3. Basic chemistry
 4. Water - The solvent of life
 5. Molecules of life
 6. Cell structure
 7. Energy, transport, and enzymes
 8. Cellular respiration
 9. Fermentation
 10. Homeostasis - The background theme
 11. Animal organization
 12. Cardiovascular system
 13. Digestive system
 14. Nutrition
 15. Respiratory system
 16. Excretory system
 17. Skeletal
 18. Muscular system
 19. Immune/Lymphatic system, blood type
 20. Nervous system
 21. Senses
 22. Endocrine system, reproductive hormones, reproduction system
 23. Sexually transmitted diseases
 24. Mitosis & Meiosis
 25. Mendelian Genetics and other inheritance patterns
 26. Genetic counseling and DNA
 27. Transcription and translation
 28. Gene regulation
 29. Biotechnology
 30. Evolutionary medicine

D. LEARNING OUTCOMES (General)
 1. identify and know the function of macromolecules and organelles within a cell
 2. understand fundamental metabolic processes
 3. demonstrate an understanding of the structure and function of the human body
 4. demonstrate an understanding of mitosis and meiosis
 5. demonstrate an understanding of Mendelian and molecular genetics
 6. formulate scientific hypotheses and apply the methods of scientific inquiry
 7. gather, interpret, and communicate data in a laboratory setting
E. Minnesota Transfer Curriculum Goal Area(s) and Competencies

Goal 03 - Natural Science

1. Demonstrate understanding of scientific theories.
2. Formulate and test hypotheses by performing laboratory, simulation, or field experiments in at least two of the natural science disciplines. One of these experimental components should develop, in greater depth, students' laboratory experience in the collection of data, its statistical and graphical analysis, and an appreciation of its sources of error and uncertainty.
3. Communicate their experimental findings, analyses, and interpretations both orally and in writing.

F. LEARNER OUTCOMES ASSESSMENT

As noted on course syllabus

G. SPECIAL INFORMATION

None noted